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Abstract

The theory of p-synthesis introduced in [1, 2] provides, in principle, a broadly applicable
theory for t}le optimal synthesis of multiloopfeedback control laws that robustly meet perfor-
mance and disturbance attenuation specifications despite unknown-but-bounded nonlinearities
and parameter variations. commercial MA’1’I,,4B-based  software packages implementing a crude
approximation to the theory are available [3, 4], but these coInputer  packages address the con~-
plcx p-synthesis problem via a somewhat flawed inplernentation of the original D-K iteration
algorithm which involves the repetition of the following three operations on a suitably augmented
closed-loop system transfer function:

1. Optirnizc  a diagonal scaling frequency response matrix D(jw) for a fixed control law K(s).
2. l’crform  an ad hoc state-space curve-fit to l~(jw).
3. Use ~lm control to compute a control law K(s) with the diagonal scaling D(s) fixed.

‘J’hc  curve-fitting of Step 2 has, until now, been a major obstacle to the realization of the
original vision of a completely automated p-synthesis procedure for robust control design. ‘l’his
talk describes new theoretical results and how they enable us to bypass the difficult and awkward
curve-fitting of Step 2. “1’he result is the first reliable computational algorithm for p-synthfxis
contro]lcr  de.sigrl,  ,

I Introduction

‘1’he l{?~l-synthesis  theory concerns the synthesis of multi variable feedback control laws with a
robust tolerance of uncertain variations in the gains and or phases in several, possibly multi variable,
feedback loops. The term “l{W, ” refers to the multivariable stability margin [5, 6]; it is the reciprocal
of the structured singular value p [7], i.e., p = l/K”,. ‘J’he term “synthesis” refers to the synthesis
(i.e., automatic design) of feedback control laws. ‘1’bus, Kn,-synthesis  and p-synthesis concern the
automatic design of control laws with good multivariable stability margins.

‘1’he concept of mu]tivariable  stability margin has a history that goes back nearly thirty years.
‘J’bough not focusing on the issues of uncertainty or stability margins, the 1960’s input-output
stability results of Sandberg [8] and Y,ames  [9] based  on conic-sectors, posit ivity and loop-gain
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contain the key concepts and formed the bwis for most modern approaches to multivmiable  stability
margin analysis. Without specific reference to the term ‘singular value,” the small-gain nonlinear
stability results of [8, 9] both incorporated singular value conditions of the sort now popularly used
to evaluate multivariablc  stability margins for linear time-invariant systems. Taking a different
tack, R.oscnbrock  made use of diagonal dominance conditions to evaluate the stability robustness of
multiloop  feedback control systems against simultaneous variations in the gains in several feedback
loops (see [1 O] and the references therein). ~ihe concept of multivariable stability margin was
introduced in the modern control context in [1 1, 5]. The connection between the nonlinear-stability
results of the Sand berg/ Zames type involving conic-sectors and singular values was made by Safonov
and Athans [1 1, 12, 13]. The singular value approach has been further developed by a number of
authors including, for example, [14, 6, 15, 16, 17].

A quantitative measure of multivariable  stability margin, called the excess stability  margin  K~,,
was introduced by Safonov and Athans [6]. Safonov [18, 19] developed a tec}iniquc  based on Perron
cigenvalucs/eigenvectors  to optimize diagonal scalings so as to produce less conservative estimates
of K,,, than would be possible with singular values alone. q’he terminology structural singular
value p was introduced by Doyle [7]; p is the reciprocal of Safonov and Athans’  multivariable
stability margin Km. Doyle [7] showed that optimal diagonally scaled singular values produce a
nonconservative estimate of p for systems with three complex uncertainty blocks. Algorithms for
optimal diagonal scaling and generalizations thereof were further studied by [20, 21]. Techniques
for further reducing conservativeness of p computations for systems with one or more uncertain
real gains were introduced by Doyle [22] and further developed by Fan et al [23]. Safonov and I,ce
[24] developed a multiplier formulation of these results and associated computational algorithms
based on the preliminary work of Chiang and Safonov [25].

‘l’he concept of Kn,-synthesis,  or p-synthesis, was introduced in the papers of Safonov [1] and
Doyle [2]. A hybrid of the I]@ control theory (e.g., [26, 27]) and the diagonal scaling techniques fcw
multi variable stability margin analysis, Km, -synthesis is potentially broadly applicable theory for the
synthesis of multiloop  feedback control systems that perform robustly despite Hm-norm bounded
uncertain gains in one or more feedback loops. ~’bough the original vision has yet to be fully
realized, commercial computer programs implementing a crude approximation to the concept were
introduced recently [3, 4]. These computer programs address the complex K~~-synthesis problem
via the so-called D – F iteration in which one iteratively optimizes first a diagonal scaling frequency
response matrix D(jw) for a fixed control law F(s) and then optimizes the control law F(s) wit}~
the diagonal scaling D(s) fixed. Each of the optimization are known to be convex individually,
though the combined problem is unfortunately not, g’bus, even under ideal circumstances the D – 1’
iteration approach to Km-synthesis cannot be guaranteed to be globally convergent. Nevertheless,
each iteration tends to improve a bound on performance and robustness so that it can be an effective
approach to robust control system design.

IIowevcr,  there is one major problem with the approaches to Km-synthesis in [1, 2, 3, 4]. ‘1’hey
all require curve fitting approximations as an intermediate step after each D(jw) optimization,
in order to obtain a rational, state-space realizable diagonal scaling matrix D(s) whose frequency
response approximates that of the D(jw) computed in the D(s) portion of the D - F iteration. It
is this curve fitting phase that is the principal obstacle to the realization of the original vision of a
completely automated Kni-synthesis  procedure for robust control design.

In t}~is paper we show how to bypass the difhcult  and awkward curve fitting phase of K~,-
synthesis. We develop theory and associated conceptional algorithms, ready for computer implc
mentation, that directly compute optimal fixed order diagonal scalings J)(s) so that curve fitting is
unnecessary. WC show that in fact it sufices to consider polynomial diagonal  scaling matrices D(s)
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F’igurc  1: IJinear fractional transformation

of a fixed degree and  that the resultant optimization is essentially finite dimensional and convex.
We adopt the more general, less conservative multiplier formulation of the Kn,-synthesis  prob-

lem introduced by us in [25]. in this formulation the usual diagonal scalings are replaced with
complex diagonal multipliers acting on a positive-real, bilinea.rly-transformed  system. our mul-
tiplier formulation includes the diagonal scaling approach as a special case, but it also has the
advantage that it is capable of j~roducing  less conservative K “,-synthesis control law designs for the
c~se in which some or all of the uncertain gains are known to be real. As noted in [24], the multi-
plier stability robustness conditions for systems with mixed real/complex uncertainty offer a new
perspective on, but are InatheInatically  equivalent to, the conditions of [22, 23]. ‘J’he advantages
of the new multiplier perspective in paving the w’ay for a reliable, fully-automated K,,l-synthesis
procedure become clear  in the present paper.

The paper is organized as follows. In section 111 we describe our multiplier formulation of the
A’,r,-synthesis problem. In section IV we show that, in seeking fixed order rational diagonal multi..
pliers, we can without 10SS of generality restrict our attention to fixed degree diagonal polynomial
Jnultip]iers.  In section V we present our main theoretical results whic}l  characterize fixed order mu].
tiplier  optimization as the equivalent of an m-form  numerical range optimization similar to that
considered by [21] --- a problem which is smooth, convex and readily solved via iterative numerical
algorithms. One such algorithm is is given in Section V]. Conclusions are in Section VII.

11 N o t a t i o n

We employ the notation in l’able  I. Additionally, we use the notation lftf(})l, 1)2) to refer to the
linear  fractional transformation resulting from the interconnection of two systems as shown in Figure
1. Note that in general, both systems 1’1 and }’Z are two port systelns,  but that the linear fractional
transformation is still defined if either system is a one port, i.e., i f either dim(u~)  == dint(y,)  =- O
or dim(uz)  =- di7f2(y2) =: O. LVe refer to transfer function  matrices in sector[(), 00] as positive rCaL
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cO1i=l,...,n(zi)
diagi__l,,n(Ai)
A
A7’
A*
A*(s)

@Ms))
hcrm(A(s))
asym(A(s))
6(A)
1)2

IIA(s)[[l,z

s
IIm
[\ A(s)[lm
sector[–  1, 1]
sector[O,  03]
scctf(A(s))

‘I’aMc  I: Notation.

dcnotes(isdefincd  as)
the set of real numbers
the set of complex numbers
the Set of integers
the set of nonnegative integers
the closed convex hull of a set A’,,
the  co lumn vec to r  [z:, z;, . . . . z~]~’ “
Col(xl, . . ..xn)
the block diagonal matrix diag(A1,  A2, . . . . An)
the complex conjugate of A
the transpose of A
AT’, if A is a matrix
A*(-i)
degree  of the polynomial matrix 1’(s)
~A iA*)
~[A.. A*)

;“’he greatest singular value of the matrix A
L2(-CO,W)

.- ~J~-Zi@Fi(jZ)aL
the unit sphere in 1,2; i.e., {x E L2 Il\zllI,z = 1}
The set of stable transfer function matrices
The IIm norm, supjW  onlaz(A(jw))
The set {G(s) E Hm I llG(s)llm < 1}
g’he set {G(s) E If@ I herm(G(ju))  >0 VU E 7?}
sectf(A) = (1 – A)(1 + A)-l

111 K,,, -Synthesis using Multipliers

Onc of the drawbacks associated with the complex Km, or p synthesis is that it treats each uncer-
tainty as being bounded by a complex disc. This can lead to conservativeness if one or more of
the uncertainties Ai is known to bc real. In [25] we briefly introduced the idea of using generalized
Popov  multipliers to formulate a new procedure that can find a robust I?m controller that takes into
account the real uncertainties of the system, In this section we describe our multiplier approach to
mixed real/con~plex  K“,-synthesis in greater detail.

A bilinear sector transform plays an essential role in our multiplier formulation of the p-synthesis
procedure. It converts the regular If m problcm of placing the closed loop system inside sector [- 1, 1]
to an equivalent problem of placing it inside sector[O, cm]; Popov multiplier techniques are applicable
to the latter problem. Multipliers which preserve the sectoricity  properties of the sector-transformed

) block diagonal uncertainty matrix A = diag(Al, . . . . AP) are then chosen so as to maximize the
gamma for which the transformed closed-ioop system is in the sector[O,  cm] meets the robust stability
conditions of the positive relation stability criterion [9] which states that a sufhcient  condition fc)r
a negative feedback interconnection of two stable systems to bc stable is that one of the systems be
~)ositivc  and the other to bc strictly positive. .4 stable  Iincar  time-invariant systcm  G(s) is positive
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if it is positive real; it is strictly positive if for some c > 0, G(s) -- (I is positive real,
‘1’hc bilinear sector transform is defined as follows

IIefinition  1 Given a squaw  transfer junction matrix  G(s), the bilinear sector transform o.f G(s)
is dcjincd  10 be

scctf(G’(s))  = (1 - G’)(1 -t G’)-””l (1)

F’rom the Ilw control pcrspcctivc,  one kcy property of the sector transform is that is maps the
scctor[–  1, 1] onto sector[O,  m].

I,emma 1 Let 7’ = scctf(G).  l’hcn G E sector[-  1, 1] if and only if 1’ E scc~or[O, co]

l’roof:  This is a well known fact (e.g., [28]). It may bc easily proved as follows:

Note that the relation 7’ = sectf(G) can bc realized via a linear

7’(s) = lftf(sltcrl’}”,  G(s))

wllcrc SII;C’I’F  denotes the matrix

[ 11 --21S1’;cr.rl”  :=- ~ _ ~

[1
fractional transformation

(3)

(4)

‘l’he sector transform sectf  is equal to its own inverse; that is,

G = scctf(sectf(G)). (5)

IIccause  it is equal to its own inverse, it follows from l,emma 1 that sectf also maps sector[O, W]
onto sector[– 1, 1]. Thus, the sector transform sectf  can be used to transform Hw control synthesis
problems into  positive real control synthesis problems and vice versa -- sce Figure 2.

Since the sector transform sectf  is equal to its own inverse, the stability and robustness properties
arc unaffected by the insertion of the two scctf  transformations. I’be  transformed T and A matrices
are given by

1 = lftf(SFtC’I’F’,  T) = sectf(T) H (1 - T)(1 -1 7’)-1 (6)

A  = lftf(A, SItCTF) = -- sectf(- A) = -(1 -i A)(1 - A)-l (7)

One readily checks that A has the same diagonal structure as A, viz.,

A == diag(~l, . . .,~P) (8)

wllerc
Ai : – sectf(_Ai) z -(l~i +  Ai)(lk, - Ai)-l (9)

Since by hypothesis Ai E sector[--l, 1], we also have –Ai E sector[–  1, 1] and  hence by J/ernma 1

— Ai E sector[O, ~]. ( lo)

l’urther, it is clear from (9) that Ai E 7< U {00} if and only if Ai E 7L U {m}.
I’he class of multip]icrs  which have the desired property of preserving the scctoricity  of the

transformed uncertainty matrix ~ are those in the closure of the set M defined as follows:



‘G
. .

Definition 2
set of transfer

~. . .
~—. .-–::. -, ‘“““ ‘

L. (

1... __<

l.._..L
~..

1 r-

[....

A(s)

.—

S1’xxi”

t]’

i. --

I
I

‘“-”-’””-””  “-”-h{:)-..—.  -—
- . . . . ———

1 I

SI?CJ’F
,. .-—.. .-.J:””I1

I l----- ““---”p Il’(s)

““”- i-’(s)L ‘“::. _...

Figure 2: Transformation of 11 m synthesis to positive-real synthesis.

The class M of multiplier matrices for the K“,-synthesis problem is defined  to be the
fuilction  matrices satisfying

herm(hl~,  (jm)) >0 Vw (11)

where M(s) is of the diagonal form

Al($)  = diag(ml(s)l~,,  mz($)l~a,.. ., n~P(s)~kP) (12)

and the mi(s) am non-zero scalar valued trunsjerfunciions,  having no poles or zeros on the jw-azis,
u~ith  real cwficients and with the additional property that, ij Ai is a complez  uncertainty then the
corresponding mi( jw) is real; i.e.,

1111 TTti(jW)) ~ O VW, if Ai is a complex uncertainty block. (13)

It is clear that if ill(s) is invertible, then A4(s) E M if and only if (J4(s))-  1 E M. While in general
the members of the class M are neither stable nor minimum-phase, we note any M(s) E M can
be factored as

M(s) =“ (M;(.S))-1J41($) (14)

where Ml and h42 and their inverses are stable and rational. We further have the following result:

Lcmnm 2 I/et Ml(s) and M2(s)  be stable tmnsfcr function matrices with stable inverses satisfying
(14) and let G(s) be a stable tmnsjer  junction matriz.  l’hen,

hern~(Af(jw)G(jw))  >0 Vw (1!5)

if and only if
M1(s)G(s)M2(s) C sec.tor[O, m] (16)
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Figure  3: Kn, -Synthesis  with Multipliers

Proof: Multiply A41(s)G(s)A42  on left and right by (A4~-1)* and A4~ 1 respectively. ‘l’he result
follows. , c1
q’he implication of I.emma  2 is that onc need not actually compute the stable minimum phase
factors ~41 (s), A42(s) of Af(s)  in order to determine their existence; rather, it suflices  verify that
some M c JW satisfies the frequency response condition (1 5).

‘l’he multipliers in M E M have the key property that for any admissible block diagonal matrix
A, M;l AM;] “IS iIwide  scctor[(), cm] if and only if A is inside sector[(), cm]. q’he classical }’OpOV

multiplier 1 -I qs is in the class M; we therefore refer the multipliers M E JW as gcncmlimd Popov
multipli~rs.  (Of course, if wc wanted to consider nonlinear A i’s as did }’opov, then it would be
Iiecessary  to impose other more complicated restrictions as in [29, 30] in our I)efinition  2 of A4. )

l’he  multiplier formulation of the lnixed real/complex uncertainty Kn,-synthesis  problem for-
mulation goes as follows (See l’igurc  3)

max ~ (17)

subject to the constraints that the controller 1’(s) bc stabilizing and

in other words, we want to find the greatest real number ~ such that for some generalized I’opov
multiplier M the infinity norm of the cost function Tjl~,  is less than or equal to one. I“’or  such a
co]ltroller,  the corresponding -y will  bc a lower bound on the size of the smallest destabilizing real
uncertainties.

Our mu]tiplicr-based  mixed real/con~plex  Kn,-synthesis design procedure is summarized by the
following conceptual algorithm, essentially a straightforward adaptation to the multiplier context
of the l) – 1’ iteration of the traditional diagonal sca]ing approach [], 2]. ~’he a]gorit}lnl returns
the Kn, -syntheses control  law &,t(s) along with the corresponding multiplier Mbc,t c .44 and
cost -(&3~ := 1/ Supti,  p(7~,U1 (jw)). g’he algorithm involves an “M-F iteration” in which one itera-
tively alternates bctwccn  (i) fixing the Inu]tip]ier  &f(s) and solving for an }Im optinlal  control law
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J’(s)  and (ii) fixing  thecontrollcr  1’(s) and optimizing the multiplier Af(s)  E JU. ~’he algorithm
terlninatcs  when neither (i) nor (ii) results in any further improvement in -y~c~t. See Figure 3.

Algori thm 1 (Mult ipl ier  p-Synthesis)

Step 1 initialize by solving the conventional Hm optimal control problem of finding a stabilizing

(Note that, jor this value

of computing an imprmkd

(18)
[1+ 1

]j~M >0 SCt ~be,f == ‘)’, &fbe,f(S) =. M(S)

step 3 Compute the factorization Mb.at
3.

and repeat Step 2; otherwise, continue to Step 3.

= (M;)-] Ml and augment the plant as shoum in J’igurv

Step 4 Increase 7 and solve the }/W optimal control prwtdem jinding  a stabilizing controller F(s)
which rnin im izes the cost

IfpF <1 set Ji..t(s) = J’(s)  and repeat Step ~; otherwise continue to Step 5.

step ~ ]j 70[&8~ < 7be8t, SCt 701&.~ = vbe,~ and gOtO Step 2; otherwise S~Op.

c1

Comments :

(i) A standard “-y-iteration” binary search would be an appropriate method for iteratively ad-
justing 7 as required in Steps 2 and 4 of the foregoing conceptual algorithm.

(ii) There is a. close relation between the multiplier approach to p-synthesis and the diagonal
scalings used in the traditional complex ~~-synthesis. If l)(s) is a stable minirnurn-phase
invertible diagonal matrix such that ti(D7’D-l  ) < 1, then it may be easily shown that
M(s) =. D“(s)D(s)  is in the class M and satisfies }]erm(M(s)  sectf(T(s))) > O; in this caN
one may take Ml(s) = D(s) and L12(3) = D--l(s), Moreover, if only complex uncertainties
A i are present, then every multiplier Ikf E M has the property that it is positive and real for
all frequency jw and hence factorizable as M(s) =- I)*(s)D(s)  for some stable minimun~-phase
D(s). It follows that diagonal scaling conditions of complex p-synthesis may be regarded as
equivalent to our multiplier conditions; of course, when some of the uncertainties are real our
lnultiplier  approach is more powerful (i.e., less conservative).
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(iii) A subtle, but  critically important problcm arises in the above algorithm because the op-
timization  of M(s) in Step 2 is most naturally addressed pointwisc  at each, lca.ding to an
irrational frequency response representation of Af(jti)  whereas  the Hw Optimization in Step
-4 requires finite-dimensional state-space realization for M(s). lndced,  since the order of the
IIm colltrol  law l’(s) that is computed in Step 4 is generically equal to one less than the order
Ml(s) ljltij A4z(s),  it is desirable that the order of 14(s)  be fixed at some reasonably small
value lest the control law J’(s)  be too complicated to implement. q’bus, in Step 2 it is critical
that the multiplier optimization be subject to an order constraint. One might handle this
first ignoring the order constraint and computing the optimal M(jw) at each frequency w,
then doing a rational or polynomial curve fit to find a finite order approximation to A4(jw).
‘J’his  is analogous to the curve fitting that is used with the diagonal-scaling frequency re-
sponsm D(jco) that arise in the conventional approach to the co]np]ex  KW, -synthesis problem

[1, 2,3, 4]. IIowever,  the use of such curve fitting is far from satisfactory since there is no
a. priori  way to assess the tradeof f between the accuracy of the curve fit and  the resultant
degradation in achievable performance ~. Fortunately, as we will show, the afIine  nature of
the multiplier optimization problem  makes it practical to directly impose  an order constraint
on M(s) in performing the multiplier optimization in Step  2, thereby bypassing the awkward
and difficult curve fitting step associated with the conventional approaches to A“,,, -synthesis.

IV l?ixcd-Order and Polynomial Multipliers

As we have noted, a critical step in the multiplier formulation of the Km-synthesis problem is the
computation of the optimal M(s) subject to an order constraint. Mathematically, the problem may
be forlnulated  as follows: Given a transfer function 7’(s) and a nonnegative integer p, to find an
order p rational, biproper  diagonal multiplier matrix M(s) =: diag{?~i(s)lki}  E M for which the
matrix hern~(lbf(s)7’(s)  is nonnegative definite. l’hat is,, we wish to find an Al(s) E M such that

hern~(~(jw)l’(jw)) >0 Vw. (19)

Equivalently, w’e wish to find M(s) E M such that

x“ herm(M(jw)7’(jo))z > 0 Vw, V//zl[  = 1. (20)

‘l’he weak point  in the conventional approach to It-synthesis  is this step. In the conventional
approach to complex Kr,t-synthesis  [1, 2, 3, 4] one computes an optimal diagonal scaling, say
l)(jw), pointwise at each frequency w. one then does an ad hoc curve fit in order to find a low-
order rational a~)proximation  D(s) to the optimal l~(jw). Al&~,  the sensitivity of p(ljltil  ) to the ,, ,

resultant inaccuracy in D(s) cannot be determined a priori and there is no single good measure of
what constitutes a good approximation.

One could employ essentially the same curve fitting approach in the multiplier case, but this
would likely lead to the same sensitivity problems that beleaguer curve  fitting in the diagonal scaling
approach to A‘~-synthesis.  Indeed, the sensitivity of p(sectf(ilf  (s)sectf(’ylj, ~l (s)))) to variations in
M(s) will in general be very dificult  to asssess  a priori. Moreover, the problem of finding a suitable
low-order rational approximation to M(s) is compounded by the constraint that the approximant
must  be in M . ~’bus, it would be much preferable if curve fitting could be bypassed altogether
and instead the order constraint w~ere explicitly ilnposed  on the M(s) ol)timization  of Step 2 of
Algorithm 1. As we shall SIIOW,  tl~is  is easy to do iIl tile [multiplier framework,
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‘J’he following lemma establishes that in searching for mtional multipliers satisfying (19) we may
without loss of generality confine our attention to real polynomial multipliers; i.e., elements of M
for which the diagonal multiplier transfer functions ?~~i(~) arc of the forms

n
lTLi(S)  =- ~ TTlij S] , i f  Ai E 72 (21)

j= 0

n
2 j?/ii(S) = ~T nlijs 9 ifAi E C. (22)

j=o

Lemma 3 Equation (19) is satisjlcd  for some mal mtional  &f(s)  E M if and only  if them  mists a
mal polynomial M(s) c M for which (19) holds. Morwoucr, if such a mtional M(s) is jactorcd  as
M(s) == &J N(s) UACW N(s) is a polynomial matriz and d(s) is scaiav valued polynomial, then tlic
dcgmc of the corresponding polynomial matrix  M(s) need not bc greater than the sum of the degrees
of d(s) and  N(s).

l’roof: l’irst  note that for any n x n invertible matrix S we have

T >0 +)’ S7’S*  >0. (23)

Also note that any rational M(s) c J4 may be written as &N(s).  ‘.aking S = d(s)] in (23), it
follows that

herm(M7’) >0 e. }lernl(fi2’)  > 0 (24)

where M(s) = d*(s) d(s)M(s) = d*N(s)  E M is a diagonal polynomial matrix of degree  equal to
the sum of the degrees of lV(s) and d(s). c1

Comments :

(i)

(ii)

(iii)

Of course, in some situations it is preferable to work with strictly proper transfer functions
M(s) which, unlike polynomials, may be realized in state-space form. Thus, if one has com-
puted a polynomial M(s), it is always possible to determine an equivalent proper multiplier
by performing the reverse of the operations in the proof of I,emma 3. That is, one may always
substitute for M(s) the equivalent proper multiplier

fi(s) = - — -] ---  fi4(s)
d“(s)d(s)

where d(s) is any scalar polynomial of degree at least half that of I14(s).

Since polynomials are linear in their  coefficients and Lemma 3 implies that in our search for
a fixed order M(s) we may restrict our attention to polynomials. l’he itnplication  is that the
order-constrained multiplier optimization that one would like to solve in Step 2 of Algorithm
1 may be directly treated as a convex optixilization  over the coefficients of the polynomials
?Tli(S), (i ~ 1,. . ,,p). that is, we may bypass the need for curve fitting without losing
convexity or otherwise complicating the problem in any significant way.

One may readily generalize I,emma  3 by substituting polynomials in functions of s for poly -
nomials  in s. For example, it would also sufice  to consider, say, TTli(S)  polynomials i II
(as -I b)/(cs 4 6) where a, b, c, d are given scalars. This  lnay have advantages whc]L OILC

prefers to have J4(s) be proper so as to be state-space realizable.



V  M a i n  R,esLllLs

q’hc above results establish that the fixed order multiplier optimization may be treated by optin~iz-
ing the cost (19) over the set of M(s) = diag{?~~i(~)l~i}  ~ M for which the S1S0 transfer functions
?i~i(~) arc polynomials of a fixed dcgrcc with real cocficicnts; that is,

deg(m,  (s))

711i(S) = ‘Y’ ““ “’ijs) ‘f ‘i E 7L (25)
j=. o

and
dcg(,n, (s))/2

?lli(S) = x ‘J! ‘fAi~c
?ltij S (26)

j .  0

WhCK! Ttlij ~ k?. Note  that the polynolilia]s  (26) corresponding to complex A i arc restricted to
bc have even degree and to have only even powers of s; this is ncecssary  and sufhcient  to ensure
that ?~~i(jti)  E 7? Vw for each complex Ai as required by Definition 2. ‘2’hus t}le nurnbcr,  say ri, of
cocficicnts  ?nij  in the i-th  multiplier ?~ti(s)  is

{

I  + deg(??ti(s)), i f  Ai E 7?,~i =.
1  -I dcg(?~~i(s))/2, i f  Ai E C.

(27)

Notice that an Al(s) satisfying (25,26) is an clement of M if and only if it satisfies the condition
hern~(M(jw))  >0 Vw – this is a condition of the same form as (19), cxccpt  with T(jw) = 1. Since
for any two hermitian matrices A, B, it holds that diag(A, B) >0 if and only if both A >0 a n d
11>0, wc have the following result.

Theorem 1 l,ct M be a subset oj M, let l’(s) be tmnsjer function matrix,  and let

Q(s, M(s)) :=. hcrm(diag(lkl(s),?vf  (s)?’(s))).

7’hcn ihcrx’  exists a multiplier M(s) E M satisfying (19) if and only ~

J
cmp :== jnf z*(jw)Q(jLu,  M(jw))x(jw)  d-d >0

Zcs -C@

In what follows we shall restrict our attention to a particular subset M of M .

1 )efinition  3 M is the set of all lwlynomial  M E JW satisfying (25,26) hold.

Suppose  A4 E M. lhdlnc  z E 7<’” as

~ :z- Col Col {?llij}
i:. 1,...,p juO,...,  (r,- 1)

where
P

(28)

(29)

[1

(31)
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‘1’bus, z E %3”X is a column vector WI1OSC elements are the ?n:j’s.  Clear]y,  for any ~ E & we have
that Q(.s, l.f(s)) may be addit.ivcly decomposed as

Q(s,  Lf(.s)) :. ~ ~iQi(g) (32)
i=l

where Qi(~)  arc hcrmitian  matrices that do not depend on the cocficients nlij.
We further define  the function

(33)

With this definition, the argument of equation (29) may be written equivalently as z~’f(x);  that is,

‘1’his leads to our main result, a corollary to Theorem 1 characterizing the computation of the
optimal fixed order polynomial multiplier matrices satisfying (19) in terms of a sort of numerical
range optimization problem -- a problem for which there are known and reliable solution approaches
(e.g., [21, 24].)

Coro l lary  1 (Key Result) Id M be a subset of M and  let 7’(s) k transfer  funct ion matrix .
P’hcn there exists  a multiplier M(s) E M satisfying (19) if and only if

of! Co(f(L!)) (35)

l’roof: From ‘1’hcorem 1, the existence of a multiplier in M satisfying (19) is equivalent to existence
of a z E 7?n* such that

(36)

which is equivalent to (35). n

V1 Algorithm and Convergence

Corollary 1 establishes that the problem of finding a polynomial M(s) E M such that (19) holds
is equivalent to the problem of detern~inil(g whether or not the point O E ‘l?nz is in the convex
hull of the set f(S) E 7t’”. This condition may be tested via the following algorithm. Since
the condition O @ co(f(S))  is equivalent to the existence of a hypcrplane  separating f(S) from O;
i.e., it is equivalent to the existence of a z E 72”Z such that (36) holds. Any such z gives us the
desired multiplier M(s) E M, z being simply the vector (30) containing the coefficients nlij of
the polynomials nli(s)  on the diagonal of the desired polynomial matrix M(s) E M. Keeping the
foregoing in mind, we are led to our main result, the following conceptual algorithm for a cotnputing
a Inultiplier  for which ( 19) holds.

Algorithm 2 (Fixed-Orcier  Multiplier Optimization)

Step 1 initialize by ctioosing a point z(]) ~ co(j(s))  and setting k=l. Choose a small conucrgcnce
LkTancc c >0.



,.

Stcl) z I,’ix z = ZtkJ and set the coeficicnts T~~ij Of M(S) cqtl~l to the

the injimizatiolt

J

w
inf z*(jw)Q(s,  A4(s))z(ju)  dw
Zc’$ -~

and  let f(k) k the minimizing value of f(x). Ij the injirnum (37)
desired multiplier satisfying 19; otherwise continue to Step 3.

Step 3 Compute the minimum norm element in co{ f (k), -z(k)}:

z(k+ 1, =- z(k) + min{a,  I}(\(k) - z(k))

Ul}lc  rc
(~(k) - ~(k))~’z(kl

a = ~~(~)-”~”””z(~) j7y(jTFI--”i(~))

13

values det.crmincd  by z. Solve

(37)

is positive, stop M(s) is the

(38)

(39)

If l[.z(k+ 1)11 < c stop; otherwise, set increment k tIy one and lwturn  to Step 2.

c1

The following theorem establishes that, when c =. O, Algorithm 2 is globally convergent to the
unique minimum norm element of co(j(C$)).

Theorem 2 (Convergence) Suppose c = O. lj there exists  a multiplier M(s) E M
such that (19) holds then Algorithm 2 converges as k -+ cm to a cortvsponding  z E 72’”; otherwise
it Convctgcs to z = o.

l)rooj:  g’hc result is essentially an application of Theorem 2 of [31]. Note that the Algorithm ‘2
implicitly defines a mapping, say g : 7<’” --+ 7?’” which maps z(k) into Z(k+ 1), i.e.,

}~urthcr,  the mapping g : Rn, ~ ~~~ ~ap~ the CoIll  Pact set CO(J(s))  into itself and k contractiv~

in the sense that, for some continuous function q’) : 7? -+ 7? with 0(0) = O and d(c)  >0 Vc >0,

119(~)115 (1 ‘-” ‘$(IIZ - .%tll)) 11~11 (41)

where ZOPt denotes the unique minimum norm element of the closed, convex, compact set co(~(L$))  C

7<nZ. It follows that at each iteration //z(k+ 1)11 < [Iz(kjll with equality holding if and only if z(k) =

zo~,t and that the sequence {z(k)} is globally convergelit  to ZOpt  - sec [31] for further details.
k’urther,  since zOPt is the minimum norm element of co(j($)),  it follows  that if -%Pf # 0, then
z&j(x) > 0 Vx E S and the coefficients ?nij of the corresponding multiplier  are the elem~nts  of
the vector z C 7?n* - see (30,32). Otherwise, the unique Ininimum  norln  element of Co(j(L$)) is
Zopt = O. ‘1’hc result follows from Corollary 1. [1
~’he question remains, how can one perform the optilnization  over x required in Step 2 of Algorithm
2? It tur115  out t]lat tlli5  i5 actually quite easy as a ~oIlsequence of the fol lowing variant  of  the

Positive Real l,emma [32].

Lcmrna 4 Consider the tmnsjcr junction G(s) = L’(Is- A)-l 1)+ 1}. Suppose the matrix  hernl(D)-
-y I is invertible and that the pair {A, 1)} is stabilizable. l’hen G’(jw) satisfies

hcr!n(G(jw))  > -y] Vu (42)
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ij and only  ij 11 > 0 and the hamiltonian  system  matrix

11 =
[

A  - B1l-”lc . ~~~-~]]”
~.]~-1~ --(A - llll-’  C)* 1

(43]

UJ}L c r-c
X= 1)+ I)* - - 2 7 1 (44)

has no cigcnvalues  on the iniaginary  axis oj the coniplez plane. Furthermore, if To is the least T jor
udtich  (42) jails to hold or, equivalently, jor r.ohich (43) has a jwaxis  cigcnvalue  at, say, jwo  thcw

I

W
inf x“(jw) hcrm(G(jti) -- ~ol)z(jw)  ah = O (45)
Zcs -~

and an injirnizing  sequence {xi~) }~- o is

x(jw) = Xou(k)(w – Wo) (46)

w h e r e  {U(k)}m .~=,o m any sequence in S such that lu(kJ(jo)/2  convcrgcs  to the Dime delta junctioti
and X. is any unit vector in the nullspacc oj herm(yo]  -- G(jwo)),  i.e., any vector satisfying

hcrm(-yo] - G(jwo))zo  Q (). (47)

l’rooj:  We only give a brief sketch. Clearly herm(G(jw))  >7 holds if and only if G( jw)) + G(jw))*  -
27] = 7’”(.s)7’(s) for some stable, minimum-phase T(s), i.e., if and only if G(jw)) -I G(jw))*  – 27]’
has a spectra] factor 7’(s) with all its poles and zeros strictly in the left half of the complex plane
C. l~ut, under the assumptions of the lemma, this is equivalent to the solvability of the lineay
quad ra.tic state-feedback optimal cent rol problem of mini mi zing the cost

(48)

for the plant
k == Ax 4- IIu. (49)

and  this linear quadratic state-feedback problem has a solution if and only if the corresponding
IIamiltonian  system matrix has no imaginary-axis eigenvalues.  Note that jn our case the cost (48)
has (43) as its associated Hami]tonian  system matrix. ‘l’hat Z. and W. exist satisfying (47) is read-
ily seen by observing that since ~ == 70 there is a frequency W. at which hern~(G(jw)) is positive
semi-definite, but not positive definite. That the sequence {u(kj}fl_,o  is infimizing  may be seen by
observing that, if z(jw) is taken to be as in (46), then (47) implies that the limiting value as k --> 00
of the integral (45) is zero. c1

Of course, the foregoing Lemma is only useful if the transfer function G(s) is state-s~)ace  re-
alizable  in the form G(s) = C(IS – A )-] N i- D. l’ortunately,  even for polynomial multi~)]iers  an
invertible matrix S(s) can always be chosen so that even if

M(s)G(s)

does not have a state space realization of the form required

S(S) M(S) C’(S) S”(S)

(50)

by Imrnma 4, the matrix

(.51)

dots, Noting that for any invertible S(s), berm of (5o) is positive semidefinite  if and only if IIerln
of (51 ) is too, it suffices to apply  I,emma  4 to the transformed system Sags* in order
to determine whether hcrm lbf(jw).$(jw) >0 VW. For example, in the case of polynomial A4(s) and
proper G(s) one ~nay take 5’(s) = hl  - l(s) to obtain  a proper c;(s)kf-  l(s).
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VII Conclusions

‘J’hc weak point of traditional approaches to K,,, -synthesis or p-synthesis hiwi been the curve fitting

step used to fit frequency responses of diagonal scaling functions with approximate rational realizat-
ions. We have dcscribcd  a conceptual algorithm, ready  for implementation on a digital computer,
which enables onc to directly compute optima] fixed-order rational diagonal scalings and, rnorc
generally, ol)tin~al  tixcd-order multipliers for mixed real/con~plcx A’w,-synthesis. Our main result is
Algorithm 2. l’hc  algorithm is sufhcicntly  flexible to handle both the traditional diagonal scaling
al]l)roach used for complex-uncertainty and the more general multiplier approach introduced in [25]
for mixed real/conlplex uncertainty. The algorithm reduces the problem of finding optimal fixed-
order  diagonal scalings and, more generally, optimal fixed-order diagonal multiplier matrices, to
the finite dimensional convex optimization problcm  of determining if O E co(~(S)) c 7?’”. Wc have
proved that the algorithm is globally convergent to the unique minimum norm elenlcl,t  of co(~(s)),
that a multip]icr  exists if and only if this element is nonzcro.  Algorithm 2 is constructive in that,
whenever a multiplier exists which satisfies (19), the algorithm always produces such a mu]tiplicr  in
a finite number of steps. Our results enable  onc to bypa.w the awkward and imprecise curve-fitting
step in K,,, -syltthesis//6-  synt,hcsis, making the overall synthesis procedure practical and reliable.
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